Serbian Vegetable Cleaver, AEB-L stainless, natural burlap micarta_

FREE Learning - The Great Steel Debate
Carbon Steel vs Stainless? Which Is Right For You?

Carbon steel vs. Stainless steel for your Custom Knife? Why is one better or worse than the other for my knife design? Why do some people have a preference? The debate has raged for decades as to which is better, carbon steel or stainless for custom knifemaking. I don't know the answer for you personally, but maybe we can explore some facts here. We'll explore these questions here and rather than try to defend one side or the other, just try to explain the facts and fallacies that both sides stand on in this argument.


Simple Carbon Steels--

The definition of steel is "iron with carbon added". The carbon helps refine the iron ore  and make it hardenable, along with trace elements like manganese and silicon. When steel makers provide a chemical analysis of a given steel, they list all alloys by percentage of the weight. Simple Carbon steels suitable for knifemaking need to contain no less than about .6% carbon to provide the hardness necessary to make a good knife. They take an excellent, keen edge, but don't hold it very long(remember Edge Retention), yet are easily resharpened. Simple carbon blades rust quite easily, and require special care to avoid corrosion. This class includes steels in the "10xx" category like 1060, 1075, and 1095, where the last two numbers indicate the carbon content in fractions of one percent. So 1060 is .6%, and 1095 is .95 % nominally. There are also a number of steels from Japan and Europe that are of this type, the Japanese being the most renowned. All these steels are referred to as "water quenched" steels, and need a super fast quench like water, brine, or a really fast engineered quench oil to fully harden. Some of these are quite forgiving in heat treat, are fairly easy to forge, and a barely serviceable knife can be made with a homemade forge or even a torch.
When the carbon content of simple steels gets over 1%, the hardening process can result in an extremely hard blade around 65-66 HRC or even harder. This is the trademark of carbon steel Japanese knives. Very high working hardness and thin, acutely sharpened edges make these knives feel and cut like lasers!


Alloy Steels--

Another subclass of steel is referred to as Alloy Steel. The alloying elements are a bit higher in these steels, and can include molybdenum, manganese, nickel, vanadium, cobalt, and chromium, among other elements. These alloys help to make a stronger steel that will harden without the shock of a water quench, and with better edge retention. They still need special care to prevent corrosion. These steels include 5160, 15N20, and 52100, among many others. 52100 particularly among this group, at 1% carbon and 1.5% chromium, is one of the toughest, finest grained alloy steels available.


Tool Steels--

The next category is Tool Steels. These steels have even higher content of alloying elements, including the elements listed above and also tungsten, niobium, nitrogen, and cobalt, although some are essentially simple carbon steels. Most of these still need care to prevent corrosion. This class includes A2, D2, W2, O1, M2, M4 and many newer additions. The more complex of these are called "High Speed Steels" for their ability to withstand higher temperatures in cutting applications without losing temper or seeing failed edges. With some of these tool steels, the addition of certain alloying elements slows the quench time into the realm of "air hardening", meaning the steel can be quenched from heat in still air and achieve full hardness.


Stainless Steels--
Then there are Stainless steels. Stainless steel must contain enough Chromium(Cr) to form an oxide film on the surface of the steel, which then helps prevent corrosion. Generally speaking the Cr content must be around 13% or above for a steel to be considered stainless, though it must be balanced with carbon content. Chromium also combines with carbon to create chromium carbides. These particles interspersed in the steel increase edge retention and wear resistance, sometimes at the expense of toughness. These carbides are why some folks don't like stainless steels. The earlier stainlesses, had big clumpy carbides. Due to the processing of the molten alloy at the foundry, these alloys would experience "carbide segregation" where clumps of one element or another would segregate into relatively large clumps of non homogenous material. These large carbides adversely affected toughness by creating crack initiation points. Additionally, early on, many stainless cutlery steels did not achieve higher working hardnesses and gained a bad reputation for being too soft to hold an edge. I hold many European and American mass producers responsible for the bad reputation of stainless steels. In  the early days of stainless cutlery they sold inferior products with inferior heat treatments, just to be in the "stainless game". To a lesser degree that continues today. With new alloys in the stainless category, that doesn't HAVE to be the case. I seriously doubt any custom knifemaker would spend time making bespoke knives from those old steels that were chosen for all the wrong properties.












Carbides, Toughness, and Edge Retention--

To this day I read articles stating that "xyz" carbon steel is "harder, tougher, better edge retention, holds edge forever", you get the drift. If you look at the chart above showing carbide types and their hardness. The top one is iron carbide. This is the carbide formed by iron and carbon(steel). When no other alloying elements are present, this will be the only carbide present in the matrix of the steel. Being the softest of all the carbides, it seems impossible that iron carbide (cementite) can possess all those magical properties. The facts show that this is fallacy, Carbon steel does not outperform stainless in any category except toughness.

These days there are many stainless steels that offer high hardness, great toughness, better edge retention than carbon steels, very fine carbide and grain size, and stain resistance. These alloys are easily sharpened with conventional abrasives and offer a less intense maintenance regime than their carbon steel counterparts. For those folks who want a performance steel without a very attentive maintenance schedule, possibilities exist!



It's important to note that every knife steel contains iron,and therefore is not truly STAINLESS, or rust PROOF. The chromium delays corrosion, but cannot completely prevent it from happening. As an example, if you wash your stainless knife, don't dry it, and leave it in the drainer, you will likely see a clean knife in the morning. If you leave your stainless knife soaking in the sink for a couple days, don't be surprised to see the beginning of some corrosion.

Stainless alloys can also provide improved edge retention over simple carbon steels. If your application doesn't require exceptional toughness (think kitchen knives), then there is a perfectly viable stainless option for you without sacrificing performance. However, if you need a hard use camping or hunting blade, carbon steel will still be the choice!

To learn more about the steels I use, click HERE. 


Chef's Knives, Outdoor Knives, Handmade Kitchen Knives available at


Thanks for reading,


Keith Nix Knives

Carbide Hardness chart, courtesy Knife Steel Nerds